
CSS Overview
Selectors, Integration, Inheritance, Cascading

© 2009 R. Scott Granneman
Last updated 2020-07-31

You are free to use this work, with certain restrictions.
For full licensing information, please see the last slide/page.

R. Scott Granneman r Jans Carton

2.4

Notes & URLs for this presentation can be found…

» underneath the link to this slide show on
granneman.com

» at files.granneman.com/presentations/webdev/CSS-
Overview.txt

http://files.granneman.com/presentations/webdev/CSS-Overview.txt
http://files.granneman.com/presentations/webdev/CSS-Overview.txt
http://files.granneman.com/presentations/webdev/CSS-Overview.txt
http://files.granneman.com/presentations/webdev/CSS-Overview.txt

History

CSS 1: December 1996

CSS 2: May 1998

CSS 2.1: July 2007

CSS 3: June 1999–Now

CSS 4: 2012–Now

CSS 1 & 2 each were one big document

CSS 3 (& 4) is not one large single spec

Instead, it’s divided into many separate documents
called modules

Currently 50+ modules!

Different modules have different statuses

www.w3.org/Style/CSS/current-work

W3C CSS Working Group: Colors & Status Codes

Why CSS?

Separation of Concerns

Divide computer program into separate concerns, each
focusing on a specific resource

Meaning: HTML

Presentation: CSS

Behavior: JavaScript

Separate content (HTML) from presentation (CSS)

Site-wide consistency: control how all content looks
using only 1 (or a few) CSS file/s

Apply different styles to same content in different
media:

» desktop web browser
» mobile web browser
» auditory
» print
» & more!

Adherence to standards

🎉 🎊 🥳 👯🕺

It’s fun!

Integrating
CSS

4 ways to connect your HTML with your CSS

1. Inline styles
2. Embedded styles
3. Linking to external styles

4. @import

Inline

Uses the style global attribute

Quick & easy to create, but difficult & time-consuming
to manage

Must repeat over and over

Can’t change the style according to the media, so styles
apply to all media

Doesn’t separate content & presentation

So why use it?

Testing (use the Inspector instead)

Use inline styles for unique instances (very rare!)

High specificity: overrides conflicting declaration (only when
absolutely necessary!)

JavaScript often uses inline styles to apply styles dynamically

HTML email

Embedded

Styles inserted inside <style> … </style>

Most often in the <head>, but can be found anywhere in
the <body>

Embedded styles are great for one page …

… but they rapidly become difficult to manage on
multiple pages

So why use it?

Resource inlining: embedding reduces outbound
requests (so does inline CSS)

Portability: You have a widget that may get embedded
into another webpage on another site

To style the widget, you include embedded styles with it
inside <style> … </style>

Linking

HTML 4.01

<head>  

 <link rel="stylesheet" type="text/css"  

 href="/css/main.css">  

</head>

HTML 5

<head>  

 <link rel="stylesheet" href="/css/main.css">  

</head>

1Start with a basic project

2Create a css folder

3Create /css/main.css

4Link to /css/main.css

What should you name your CSS file?

It doesn’t matter

main.css

typography.css

client.css

search.css

navigation.css

Where should you place your CSS file?

In your website’s root directory, always create these
directories:

css (or styles)
fonts
images (or media)
js (or scripts)

A CSS file is solely made up of rulesets & comments

/* Common */

blockquote, p, td {  

 font-family: Verdana, sans-serif;  

 font-size: 1em;  

}

#footer {  

 font-size: .9em;  

}

.emphasis {  

 font-weight: bold;  

}

You can link to more than one style sheet, but you
should try to keep those links to a minimum

If you have more than one webpage, you really ought to
use an external style sheet

You can now change the look & behavior of an entire
site by changing only one document!

@import

@import allows you to include external stylesheets in
your CSS; in other words, it allows you to link to
another CSS file from within a CSS file (yes, this is a
little weird)

@import must always come 1st, ahead of any other CSS

import.css included via @import

Put @import 1st so it can be overridden

Don’t use it unless you absolutely need to use it, as it
can slow down your page loads*

* Unless you are using a build system like SCSS; more on that in CSS - Preprocessors

✏ SIDE NOTE

Delay User Perception

0–100 ms Instant

100–300 ms Small perceptible delay

300–1,000 ms Machine is working

1,000+ ms Likely mental context switch

10,000+ ms Task abandoned

The Browser
Processing

Pipeline

Render Tree

HTML

CSS

JavaScript

DOM

CSSOM

Layout Paint

To understand CSS, you have to understand

» the DOM (Document Object Model)
» the CSSOM (CSS Object Model)
» the browser processing pipeline

The DOM

Render Tree

HTML

CSS

JavaScript

DOM

CSSOM

Layout Paint

Before a webpage appears in a viewport, the rendering
engine downloads the HTML & parses it to figure out
how to display the webpage on screen

During this process, the rendering engine creates the
DOM tree

“A Web page is a document. This document can be
either displayed in the browser window, or as the
HTML source. But it is the same document in both
cases. The Document Object Model (DOM) provides
another way to represent, store and manipulate that
same document. The DOM is a fully object-oriented
representation of the web page, and it can be
modified with a scripting language such as
JavaScript.” —Mozilla Developer Network

When is the DOM different than your HTML?

If you have mistakes in your HTML, the rendering
engine “fixes” them when it generates the DOM

Source Code

DOM as rendered by browser Inspector

Source Code

No <tbody>

Rendered DOM

<tbody> added

<table>

 <tbody>

 <tr>

 <td>Foo</td>

 <td>Bar</td>

 </tr>

 <tr>

 <td>Baz</td>

 <td>Qux</td>

 </tr>

 </tbody>

</table>

DOM tree

<table>

 <tr>

 <td>Foo</td>

 <td>Bar</td>

 </tr>

 <tr>

 <td>Baz</td>

 <td>Qux</td>

 </tr>

</table>

Source code

DOM tree
as org chart

DOM tree as nested boxes

Firefox up to version 47 had a cool feature called 3D
View that let you “rotate and re-orient the 3D
presentation of the DOM hierarchy of your page to see
it from different angles”

The CSSOM

Render Tree

HTML

CSS

JavaScript

DOM

CSSOM

Layout Paint

The CSSOM is built by the rendering engine using
specified stylesheet rules from:

» built-in rules that come with the browser
» rules added by user
» rules created by CSS authors (developers)

Bringing It All
Together

Render Tree

HTML

CSS

JavaScript

DOM

CSSOM

Layout Paint

JavaScript can change the DOM & the CSSOM

As of July 2020, there are 69 Web APIs

Ambient Light Events • Background Tasks • Battery • Beacon • Bluetooth •
Broadcast Channel • CSS Counter Styles • CSS Font Loading • CSSOM •
Canvas • Channel Messaging • Console • Credential Management • DOM •
Encoding • Encrypted Media Extensions • Fetch • File System • Frame Timing
• Fullscreen • Gamepad • Geolocation • HTML Drag and Drop • High
Resolution Time • History • Image Capture • IndexedDB • Intersection
Observer • Long Tasks • Media Capabilities • Media Capture and Streams •
Media Session • Media Source Extensions • MediaStream Recording •
Navigation Timing • Network Information • Page Visibility • Payment
Request • Performance • Performance Timeline • Permissions • Pointer
Events • Pointer Lock • Proximity Events • Push • Resize Observer • Resource
Timing • Server Sent Events • Service Workers • Storage • Storage Access •
Streams • Touch Events • URL • Vibration • Visual Viewport • Web
Animations • Web Audio • Web Authentication • Web Crypto • Web
Notifications • Web Storage • Web Workers • WebGL • WebRTC • WebVR •
WebVTT • WebXR Device • Websockets

Render Tree

HTML

CSS

JavaScript

DOM

CSSOM

Layout Paint

The rendering engine matches HTML element objects
with CSS rule objects to generate the Render Tree

Render Tree

HTML

CSS

JavaScript

DOM

CSSOM

Layout Paint

The rendering engine uses the Render Tree to layout
boxes in the viewport

Render Tree

HTML

CSS

JavaScript

DOM

CSSOM

Layout Paint

The rendering engine displays (paints) all the content
of the page in the viewport, from back to front

Render Tree

HTML

CSS

JavaScript

DOM

CSSOM

Layout Paint

Events

JavaScript events can further change the DOM & the CSSOM

The big takeaway: when you’re working with CSS, you
are manipulating objects that will be rendered as boxes

Basic
Selectors

A CSS selector declares which DOM objects should
have particular styles applied to them

The browser’s rendering engine…
» parses the CSS & HTML
» matches selectors to the appropriate DOM objects
» applies the CSS style to the rendered DOM objects

HTML CSS

<h1 align="center"> h1 {text-align: center;}

Entire thing is a tag Entire thing is a ruleset

h1 is an element h1 is a selector

align is an attribute text-align is a property

center is a value center is a value

align="center" is an
attribute-value pair

text-align: center is a
declaration

Everything inside { & } is a
declaration block

CSS 1: 10 different selectors (including selectors,
combinators, pseudo-classes, & pseudo-elements)

CSS 2: 13

CSS 3: 21

CSS 4: 26 (so far!)

70 in total

1. Simple selectors

» Universal
» Type
» Class
» ID
» Pseudo-classes
» Pseudo-elements
» Attribute

2. Compound selectors

3. Complex selectors with
combinators

» Descendant
» Child
» Adjacent sibling
» General sibling

4. Selector list

Simple Selectors

A simple selector describes a single condition on an
element

If the condition is true, the element is selected

* (universal): Is this an element?
element: Is this the specific type of element?
.class: Does this element have this class on it?
#ID: Does this element have this ID on it?

Universal

*

Selects every HTML element

(Though later CSS rules can override these
declarations)

Type

element

Selects every matching HTML element (e.g., <p>, ,
or <h3>)

AKA Element Selectors

Used when you want to affect every instance of an
element

Class

.class

Selects any element to which the class has been
applied, as many times per page as needed

Dot in front of the class name
in CSS, but no dot in HTML

Dot labels the class in CSS

The class attribute labels the
class in HTML

The paragraph with class
applied to it is different from
the paragraph that does not
have that class

A class can be applied as many
times per page as you wish

You can use multiple (2, 3, 4, whatever) classes on an
element when needed

✏ SIDE NOTE

A student once did this:

<figcaption class="center" class="image-

caption">

This will not work! No duplicate attributes!

You must use:

<figcaption class="center image-caption">

🤨

✏ SIDE NOTE

How do you match an element that has a particular
combination of classes on it?

<p class="center note">

See Compound Selectors later in this slide deck

There is no default list of class names

You come up with the class names your project uses (or
you use those provided by a framework like Bootstrap)

Don’t use spaces

Rules for class values in HTML5

In fact, you can use emoji for class names

.📰 {

 background-color: hsl(0,0%,76%);

}

.🤮 {

 font-family: "Comic Sans", cursive;

}

If you use emoji, you must put @charset "utf-8"; at
the top of your style sheet

The big rule for class names: describe function, not
appearance

Not “what does it look like?” but instead “what is it
doing?”

Bad class names

.author name  

.big-red  

.small

Good class names

.author-name  

.caption  

.alert  

.footnote  

.center

Multiple words in a class name?

.main-content-nav

.main_content_nav

.maincontentnav

.mainContentNav

.MainContentNav

Just be consistent!

← What most developers use

ID

#id

Selects any element to which the ID has been applied,
but each ID can only be used once per page

You can use multiple IDs on a page, but each ID must
be unique

#id & .class share a lot of similarities

» Names are made up by developers, not specs
» Names shouldn’t have spaces
» Names should denote purpose, not appearance
» Names containing multiple words should be

combined with a - or something else consistently

A specific ID can be applied
one time per page

Class ID

CSS .foo #bar

HTML class="foo" id="bar"

Unique on page No
class="foo" 10x

Yes
id="bar" once

Values per element Multiple
class="foo bar"

One
id="baz"

Specificity 10× 100×

URL addressable No Yes

Bad ID names

#top nav  

#tiny-little-fonts

Good ID names

#sidebar (use <aside>)
#utility-nav (use <nav>)
#site-footer (use
<footer>)
#logo
#legalese

Use classes instead of IDs (in fact, try to avoid IDs as
much as possible when it comes to CSS)*

Classes can be reused, while IDs cannot

IDs can make the cascade (more about that soon!) very
complicated

Many (most?) frameworks (like Bootstrap) stick to
classes entirely

* OK, you may need one every once in a blue moon

However, even if we don’t use IDs in CSS as much as
we used to, they are still necessary

» Page fragment identifiers
» Unique hooks for JavaScript

IDs as page fragment identifiers

Given this HTML on http://www.foo.com/toc/:
<h2 id="chapter2">

You could link directly to it on the same page:

Or from a different page:

This parameter…

…helps the JavaScript…

…target this ID

Other simple selectors

» Attribute selector
» Pseudo-class
» Pseudo-element

Those will be covered in CSS - Selectors

Compound Selectors

A compound selector describes multiple conditions on
an element

If all conditions are true, the element is selected

Consists of a chain of simple selectors connected
together, but not connected by a combinator (which is
coming up next)

p.alert (usually .alert is all you want, allowing you to
use the class with any element)

table.inventory

table.inventory.northwest

.cthulhu:first-child

A compound selector is used to match an element that
has two classes on it

<p class="center note">

.center {

 text-align: center;

}

.note {

 font-size: .9em;

}

.center.note {

 font-style: italic;

}

Selects elements with the
.center class

Selects elements with the
.note class

Selects elements with the
.center and .note classes

Complex Selectors
Using Combinators

A complex selector uses combinator(s) to combine
multiple selectors together into 1 selector

␣ (space)
> (greater than)
+ (plus)
~ (tilde)

Key Selectors

Rendering engines match selectors from right to left

The right-most part is the key selector, the actual object
being selected

Really helpful understanding complex selectors

ul li

ul > li

ul > li a[title="home"]

.callOut > p:last-child

.ws-header .nav > li > a

p code, pre code, blockquote code

Descendant Combinator

selectorA selectorB

Selects all selectorB who have selectorA as an
ancestor

selectorB can be a child, grandchild, or later
descendant of selectorA

Any other selectorB who does not have selectorA as
an ancestor is unaffected

Default for nested :
disc •, circle ◦, square ▪

I only wanted these s to
change to ▪, not all of them

You can often use a descendant combinator instead of a
class (& you must if you cannot change the HTML)

👎

HTML
<aside>

 <img

class="headshot"

src="…">

</aside>

CSS
.headshot {}

👍

Cleaner HTML
<aside>

</aside>

Better CSS using the
descendant combinator
aside img {}

Child Combinator

selectorA > selectorB

Selects any selectorB who is a direct child of selectorA,
not a grandchild or any other descendants

All siblings who are direct children of selectorA are
selected

Siblings: 2 or more elements that share a parent

Contrasts with the descendant combinator, which selects
both direct children & any descendants, no matter how deep

Default for nested :
disc •, circle ◦, square ▪

1st level changed from • to ▪,
but 3rd level remains ▪ because
that’s the default

👍

}

}

🤨

Let’s change all 3 level defaults:
1st from • to ▪, 2nd from ◦ to •,
& 3rd from ▪ to ◦

An illustration of the difference between the descendant
& child combinators

Using > limits the scope of the styles

Selector List

selectorA, selectorB, selectorC

List selectors that have similar declarations for simpler
& cleaner CSS & HTML

Don’t do this:

p {  

 font-family: Verdana, sans-serif;  

 font-size: 1em;  

}

blockquote {  

 font-family: Verdana, sans-serif;  

 font-size: 1em;  

}

Do this:

blockquote, p {  

 font-family: Verdana, sans-serif;  

 font-size: 1em;  

}

Any selector can be included in the list

.emphasis, .title {font-style: italic;}

em, .title {font-style: italic;}

p, #nav, .pullquote {font-family: Verdana,

sans-serif;} 🤪

A very common selector list

h1, h2, h3, h4, h5, h6 {

 …

}

Group similar selectors, but be specific where needed

CSS is cumulative unless overridden

blockquote, p {

 font-family: Verdana, sans-serif;

}

p {

 line-height: 1.5;

}

Turn this:

h1 {

 font-weight: normal;

 font-size: 2.5em;

 font-family: serif;

}

h2 {

 font-weight: normal;

 border-bottom: 1px

dotted black;

 font-family: serif;

 font-size: 1.8em;

}

Into this:

h1, h2 {

 font-weight: normal;

 font-family: serif;

}

h1 {

 font-size: 2.5em;

}

h2 {

 border-bottom: 1px dotted

black;

 font-size: 1.8em;

}

Good practice

blockquote,

option,

p,

td,

#sidebar,

.legalese {  

 font-family: Verdana, sans-serif;  

 font-size: 1em;  

}

Elements, then IDs, then classes

Alphabetical order within
each grouping of selectors

Formatting

Don’t do this:

h1 {color: dimgray;}

h1 {font-size: 1.4em;}

h1 {font-weight: bold;}

h1 {font-family: Verdana, sans-serif;}

Instead, combine related declarations

h1 {

 color: dimgray;

 font-family: Verdana, sans-serif;

 font-size: 1.4em;

 font-weight: bold;

}

Formatting CSS rulesets

selector {  

 property: value;  

 property: value;  

 property: value;  

 …  

}

The order of declarations in the declaration block
doesn’t matter

Do not forget to put ; at the end of every line in a
ruleset

You do not actually have to put ; at the end of the last line in a ruleset, but that is a very bad

habit to get into

Use comments in CSS for the same reasons as in
HTML

» Notes to yourself & others
» Debugging: comment out troublesome CSS for testing

(use your browser’s Inspector)

HTML comments
<!-- blah blah html blah blah html -->

CSS comments
/* blah blah css css blah blah css css */

✏ SIDE NOTE

Design Pattern

“a formal way of documenting a solution to a design
problem in a particular field of expertise.” —Wikipedia

“Each pattern describes a problem that occurs over and
over again in our environment, and then describes the
core of the solution to that problem” —Christopher
Alexander, architect & author of A Pattern Language
(1977)

✏ SIDE NOTE

Bootstrap 4’s classes for the common design pattern of
rounded borders

✏ SIDE NOTE

Bootstrap 4’s classes for the common design pattern of
cards

💡PRO TIP

Here’s the order Jans normally uses in his
stylesheets

1. General rules that apply to the whole site (linked
libraries, typography)

2. Site-wide design patterns (header, nav, footer)
3. Page type design patterns (sidebar, news, post)
4. Specific page design patterns (home page)
5. Content design patterns (callouts, image gallery)

With appropriate comments sprinkled throughout

💡PRO TIP

Here’s the order I sometimes shoot for in my stylesheets

@font-face

html

body

/* General */

<type selectors, A➝Z>

<ID selectors, A➝Z>

<class selectors, A➝Z>

/* <New Section> */

<type>

<ID>

<class>

…

&

<div>

HTML elements “work” without attributes & values

(with a tiny few exceptions, like & <a>)

 & <div> are HTML elements designed solely to
work with CSS*

 & <div> by themselves do nothing on a
webpage (except draw invisible boxes)

They must use CSS (class="foo" or id="bar") to do
anything productive

* & JavaScript

 is a text semantic element that creates an inline box &
does nothing else without CSS

Use to hold attribute-value pairs relevant to CSS

As a text semantic element, it usually doesn’t have other
elements nested inside it

Ph’nglui mglw’nafh Cthulhu R’lyeh

wgah’nagl fhtagn!

Use it when other text semantic elements are not semantically
appropriate

<div>

<div> is a grouping element that creates a block box by
default & does nothing else without CSS

Use <div> to hold attribute-value pairs relevant to CSS

As a grouping element, it groups other elements, e.g.,
put a <div> around 3 <p>s & a

Use it when other grouping elements are not
semantically appropriate

I want the table of contents to stand
out with a background color,
borders, & rounded corners

Well that looks stupid…

Much better—& that is why we have
<div>

✏ SIDE NOTE

To be semantic, I should really
use an

This is a useless <div>

<div class="lead-copy">

 <p>

When a traveller in north central Massachusetts takes
the wrong fork at the junction of the Aylesbury pike just
beyond Dean’s Corners he comes upon a lonely and
curious country.

 </p>

</div>

Only use <div> around 2 or more elements that create block
boxes*

* It’s OK to wrap a <div> around 1 element in a few cases

Inheritance

Some properties, like font-size & color, are inherited:
elements with those properties pass those properties
down through the DOM to their descendant elements
(unless overridden)

Other properties, like background-image & border, are
not inherited: elements with those properties do not pass
those properties down to their descendent elements

Inheritance is for elements that do not have properties
set

border-

 collapse

border-spacing

caption-side

color

cursor

direction

empty-cells

font-family

font-size

font-weight

font-style

font-variant

font

letter-spacing

list-style-

 type

list-style-

 position

list-style-

 image

list-style

line-height

orphans

quotes

text-align

text-edge

text-indent

text-transform

visibility

white-space

widows

word-spacing

Partial list of inherited properties

Cascading
Style Sheets

How does the rendering engine know which style to apply
to an element?

If a selector matches an element, that selector’s styles are
used

Inheritance comes into play if an element does not have
properties set

But what if the CSS rules conflict; e.g., what if CSS tells
the rendering engine to make all <p>s use serif and sans-
serif fonts?

If an element’s CSS declaration conflicts with another
declaration, the rendering engine uses the Cascade to
find a winner

In other words, conflicting declarations follow a
cascade, & the rule with the most weight wins

3 parts to the Cascade

1. Importance

2. Specificity

3. Order

Importance

CSS can come from 3 places:

» Browser, aka, the user agent
» User
» Author

All Web browsers have built-in CSS rules

In Firefox, for example, why does <p> have a certain
amount of space before & after it?

Because of Firefox’s built-in default CSS

Firefox

Equivalent to margin-top: 1em
& margin-bottom: 1em

WebKit (Safari)

Equivalent to margin-top: 1em
& margin-bottom: 1em

1em on top & bottom; 0 on right & left

“The CSS rules given in these subsections are, except
where otherwise specified, expected to be used as part
of the user-agent level style sheet defaults for all
documents that contain HTML elements.”

Users can specify CSS rules too

Why?

» All fonts are at least a certain size
» A certain font is used because it’s more readable
» Always enable text-decoration: underline so

links are obvious
» See outlines around elements with keyboard focus

using outline: solid

Firefox has always allowed users to create their own
styles in a file called userContent.css that goes into
your Firefox Profile

For more about your Profile: kb.mozillazine.org/
Profile_folder_-_Firefox

For more about userContent.css: kb.mozillazine.org/
UserContent.css

http://kb.mozillazine.org/Profile_folder_-_Firefox
http://kb.mozillazine.org/Profile_folder_-_Firefox
http://kb.mozillazine.org/UserContent.css
http://kb.mozillazine.org/UserContent.css
http://kb.mozillazine.org/Profile_folder_-_Firefox
http://kb.mozillazine.org/Profile_folder_-_Firefox
http://kb.mozillazine.org/UserContent.css
http://kb.mozillazine.org/UserContent.css

✏ SIDE NOTE

As of Firefox 69, userContent.css isn’t supported
by default unless users first enable the feature

1. Type about:config in the Firefox address bar &
select Enter

2. Click the button that confirms you Accept the Risk
and Continue

3. In the box at the top, search for toolkit.  
legacyUserProfileCustomizations.stylesheets

4. Double-click on the resulting line to toggle to true
5. Restart Firefox

Internet Explorer

Chrome 33 (2014) dropped support for a user styles file

Chrome 33 (2014) dropped support for a user styles file

Edge: Never supported a user styles file!

Edge: Never supported a user styles file!

Safari — I created safari.css for my own use

My safari.css file

html {

 font-family: "Source Sans Pro", sans-serif;

}

h1, h2, h3, h4, h5, h6 {

 font-family: "Georgia Pro", serif;

}

code, kbd, pre, samp, tt, var {

 font-family: "Source Code Pro", monospace;

}

✏ SIDE NOTE

Browser makers’ response when asked about missing
support for a user styles file: “Get an extension”

Do get:

» Stylus for Chromium-based browsers & Firefox (which
is excellent & removes all analytics, telemetry, & data
collection)

» Cascadea for Safari

Do not get: Stylish (used to be good, but now it’s
spyware)

If a user’s CSS contradicts a author’s CSS, the user can
make sure hers “wins”

Use !important after a property-value pair

p {

 font-size: 36px !important;

}

However, CSS authors can do the same thing!

My safari.css file

html {

 font-family: "Source Sans Pro", sans-serif;

}

h1, h2, h3, h4, h5, h6 {

 font-family: "Georgia Pro", serif;

}

code, kbd, pre, samp, tt, var {

 font-family: "Source Code Pro", monospace;

}

Notice: no !important

The order of importance

AKA

The order in which stylesheets are weighted

Browser

User

Author

Author !important

User !important

Author & Author !important?

Why are you contradicting yourself?

Do I contradict myself?
Very well then I contradict
myself,
(I am large, I contain
multitudes.)

From Walt Whitman’s
“Song of Myself” from
Leaves of Grass

You’re not contradicting yourself (hopefully!)

What if you’re using Bootstrap & its default CSS?

<link rel="stylesheet" href="bootstrap.css">

Is that CSS coming from the browser, user, or author?

You will want to override some of Bootstrap’s selectors

<link rel="stylesheet" href="bootstrap.css">

<link rel="stylesheet" href="me.css">

Author vs. author

Sometimes, you will have to use !important to beat the
other author

Be careful using !important

“!important: 3 seconds to type, 3 years to remove.”
—Harry Roberts

“!important is the Hammer of Thor, smiting
everything in its path.” —Jans Carton

Only use it as a last resort

Specificity

Remember, compound & complex selectors are made
up of multiple simple selectors

p.foo.bar (compound) is made up of 1 type & 2 classes

.foo > cite (complex) is composed of 1 class & 1 type

Specificity asks how specific is each selector?

Each simple selector is assigned a weight value

The greater the weight, the more specific the selector

In other words, with great weight comes great specificity 😜

Each ID selector is worth 100

Each class, pseudo-class, & attribute selector is worth
10

Each type & pseudo-element is worth 1

The following are ignored when calculating
specificity:

» Combinators: ␣, >, +, ~
» Universal selector: *
» Negation pseudo-class (but not the contents — that is

counted!): :not(.but-this-part-is-counted)

Inline styles (<style="foo">) always outweigh
everything else (a good reason to hate them)

* 0

li 1 1

ul li 1+1 2

.foo > li 10+1 11

ul ol li.steps 1+1+1+10 13

li.steps.mech 1+10+10 21

#chapter1 100 100

style="foo" ∞

Order

Later CSS in the stylesheet wins over earlier CSS

main.css:

.blue {color: blue}  

.red {color: red}

index.html:

<p class="red blue">  

 What color am I?  

</p>

main.css:

.blue {color: blue}  

.red {color: red}

index.html:

<p class="red blue">  

 What color am I?  

</p>

main.css:

.red {color: red}  

.blue {color: blue}

index.html:

<p class="blue red">  

 What color am I?  

</p>

main.css:

.red {color: red}  

.blue {color: blue}

index.html:

<p class="blue red">  

 What color am I?  

</p>

The Cascade

Here’s some code I have on a website:

<div class="callOut">

 <p>

 For the next 2 weeks…
 </p>

</div>

.callOut {

 background-color: #E6E8F2;

 margin: 1em 1em 2em 1em;

 padding: 1em;

 border: 1px #ccc solid;

 border-radius: 1em;

}

The result!

However…

That extra space at the
bottom really bothers me

That extra space at the
bottom really bothers me

To fix it, I put this in my CSS at lines 194–196:

.callOut > p:last-child {

 margin-bottom: 0;

}

Let me explain what that means…

.callOut > p:last-child {

 margin-bottom: 0;

}

p:last-child is a
pseudo-class that
means the <p> that
is the last child of
(not descendant of)
the .callOut class

> is a combinator that selects the
direct children of (not descendants
of) the .callOut class

So this selects the <p> that is the last direct child of
the .callOut class

.callOut > p:last-child {

 margin-bottom: 0;

}

<div class="callOut">

 <p>foo</p>

 <p>bar</p>

 <p>baz</p>

 <p>quz</p>

 <blockquote>

 <p>quux</p>

 </blockquote>

</div>

Selected!

Not selected, as this <p> is
not the last direct child

EX
A
M
P
LE

Why use this?

.callOut > p:last-child {

 margin-bottom: 0;

}

Why not just use this?

.callOut > p {

 margin-bottom: 0;

}

Because sometimes there are 2 or more paragraphs inside
.callOut

So back to where I was… I put this in my CSS at line
194:

.callOut > p:last-child {

 margin-bottom: 0;

}

Let’s check the webpage…

Nothing changed!

Why didn’t it work?

Let’s open the Inspector & find out why

Hmmm… mine is being beaten by earlier code

Lines 146–148:
#content p {

 margin-bottom: 12px;

}

Lines 194–196:
.callOut > p:last-child {

 margin-bottom: 0;

}

Why isn’t mine winning since it’s later in order?

Lines 146–148:
#content p {

 margin-bottom: 12px;

}

Lines 194–196:
.callOut > p:last-child {

 margin-bottom: 0;

}

Is importance causing the 1st declaration block to win?

Nope

Lines 146–148:
#content p {

 margin-bottom: 12px;

}

Lines 194–196:
.callOut > p:last-child {

 margin-bottom: 0;

}

Is specificity causing the 1st declaration block to win?

Let’s look

#content p {

 margin-bottom: 12px;

}

Specificity

(#content = 100) +
(p = 1) =
101

.callOut > p:last-

child {

 margin-bottom: 0;

}

Specificity

(.callout = 10) +
(p = 1) +
(:last-child = 10) =
21

Lines 146–148:
#content p {

 margin-bottom: 12px;

}

Lines 194–196:
.callOut > p:last-child {

 margin-bottom: 0;

}

Because specificity meant the 1st declaration block had
the most weight, order never entered into the picture

Nope—tied

Never got to itSpecificity beat me

There are 3 ways to solve this problem

Lines 146–148:
#content p {

 margin-bottom: 12px;

}

Lines 194–196:
.callOut > p:last-child {

 margin-bottom: 0 !important;

}

Adding !important makes the 2nd ruleset win due to
importance, so specificity & order never come into play

I won before
we could get to
anything else

Never got to it

Lines 146–148:
#content p {

 margin-bottom: 12px;

}

Lines 194–196:
#content .callOut > p:last-child {

 margin-bottom: 0;

}

Adding #content to line 194 makes the 2nd ruleset win
due to specificity, so order never comes into play

Lines 146–148:
#content p {

 margin-bottom: 12px;

}

Lines 194–196:
#content .callOut > p:last-child {

 margin-bottom: 0;

}

Adding #content to line 194 makes the 2nd ruleset win
due to specificity, so order never comes into play

100 + 1 = 101

100 + 10 + 1 + 10 = 121

I won (121 over 101)

Never got to it

Tied

Lines 146–148:
p {

 margin-bottom: 12px;

}

Lines 194–196:
.callOut > p:last-child {

 margin-bottom: 0;

}

Getting rid of #content on line 146 makes the 2nd
ruleset win due to specificity, but I can’t easily remove it!

Lines 146–148:
p {

 margin-bottom: 12px;

}

Lines 194–196:
.callOut > p:last-child {

 margin-bottom: 0;

}

Getting rid of #content on line 146 makes the 2nd
ruleset win due to specificity, but I can’t easily remove it!

1

10 + 1 + 10 = 21

Much better!

Much better!

Much better!

Bonus question: how do we get rid of those extra pixels at
the top?

Then I realized that <div class="callOut"> doesn’t
always end with <p>

#content .callOut > *:last-child {

 margin-bottom: 0;

}

Now it’s weighted to win and selecting the correct DOM
objects

What if I have nested last children inside other nested
last children?

.callOut > *:last-child,

.callOut > *:last-child > *:last-child,

.callOut > *:last-child > *:last-child >

*:last-child {

 margin-bottom: 0;

}

CSS Reset
Keywords

CSS keywords have special meaning in CSS & are
reserved by the language, e.g.:

» border & font-family are property keywords
» solid & dotted are value keywords
» black & red are color value keywords
» <length> & <color> are data type keywords
» @media & @supports are at-rule keywords
» attr() & calc() are function keywords
» :hover & :focus are pseudo-class keywords
» ::before & ::first-letter are pseudo-element

keywords

There are 5 global keywords in CSS

» 4 are values: initial, inherit, unset, & revert
» 1 is a property: all

initial value resets property back to its default value as
defined in the spec

inherit value forces an element to inherit styles from an
ancestor that it would not normally inherit

unset value acts as either inherit (if the property is
inherited) or initial (if the property is not)

revert value rolls back the property’s cascade, depending
upon who declared it: the browser, user, or author

initial value resets property back to its default
value as defined in the spec

Remember, in the specs for CSS…

» display default is inline
» font-size default is medium
» border-style default is none
» border-width default is medium
» margin & padding defaults are 0
» font-family default “depends on user agent”

Don’t get confused

Look at <p>

» Browsers set defaults by selector, so <p> defaults to
display: block

» The spec sets defaults by property, so display:
inline is the default

initial resets properties back to the spec, not the
browser!

The browser’s default for <p>
is display: block

The spec says that all boxes
default to display: inline

initial resets back to the
spec, not the browser

The inherit value forces an element to inherit values
from properties that are not normally inherited

unset value acts as either inherit (if the property is
inherited) or initial (if the property is not)

What’s the use case for this? See all just ahead

revert value rolls back the property’s cascade,
depending upon who declared it: the browser, user,
or author

» if the author is the origin, it rolls back to the user
» if the user is the origin, it rolls back to the browser
» if the browser is the origin, it rolls back to the spec

If the origin that is rolled back to does not declare a
value for the property, it is skipped & the rendering
engine rolls back another level

Effects of revert

Author

User

Browser

Spec

If revert is rolling back a property’s
style set by an author, & the user has
not set a style, it skips the user &
rolls back to the browser, & so on

Most common use-case for revert: you have a heavily-
modified selector & you want to revert back to the
browser’s defaults (remember, most users never set any
styles, so that one is skipped over)

all

Magic property that resets all property values, except
for direction & unicode-bidi

Really designed to be used with small components — 
you wouldn’t want to do this for an entire page

Values are the 4 global keywords: initial, inherit,
unset (which now makes sense in a limited scenario!),
& revert

initial – 12 19 3.2 4 4 2.3

inherit 8 12 2 3.1 3.2 4 2.1

unset – 13 27 9.1* 9.3* 41 41

revert – – 67 9.1 9.3 84? –

all – 79 27 9.1 9.3 37 4.4.4

* all: unset is buggy in Safari & sets color to black, preventing you from setting another color; the
workaround is to use -webkit-text-fill-color everyplace you also use color; Safari 14 fixes this

Tools

Books

Great overview of HTML5
& CSS2 (& some CSS3)

References

developer.mozilla.org/en-US/docs/Web/CSS/Reference

As of July 2020 there are 617 terms!

MDN supporters & contributors

1st 8 Guides on CSS Tricks (there are lots more!):

» A Complete Guide to Flexbox ★

» Media Queries for Standard Devices

» A Complete Guide to Grid ★

» A Complete Guide to the Table Element
» Centering in CSS: A Complete Guide
» A Complete Guide to SVG Fallbacks
» A Nerd’s Guide to Color on the Web
» A Complete Guide to Data Attributes

caniuse.com

apps.workflower.fi/vocabs/css/en

pinboard.in/u:rsgranne/t:css

Browser Tools

Built-in developer tools are excellent

Validation

jigsaw.w3.org/css-validator/

Color Pickers

Sip

Color picker

theolabrothers.com

$0 (with $9.99 in-app purchase)

Just Color Picker

Small & with the necessary features

$0

annystudio.com/software/colorpicker/

http://annystudio.com/software/colorpicker/
http://annystudio.com/software/colorpicker/

ColorPro

Professional color picker

www.iconico.com/colorpro/

$30

Thank you!

scott@granneman.com
www.granneman.com
ChainsawOnATireSwing.com
@scottgranneman

jans@websanity.com
websanity.com

CSS Overview
Selectors, Integration, Inheritance, Cascading

© 2009 R. Scott Granneman
Last updated 2020-07-31

You are free to use this work, with certain restrictions.
For full licensing information, please see the last slide/page.

R. Scott Granneman r Jans Carton

2.4

Changelog

2020-07-31 2.4: Created diagram for the Browser
Processing Pipeline; made Descendant Combinator
examples clearer by adding arrows

Changelog

2020-07-21 2.3: Added list of Web APIs after
JavaScript; added slides about design patterns in
Formatting; added example of looking up property’s
initial value at MDN; updated screenshot for initial
value & added explanation to it; added additional,
easier examples for descendant & child combinators;
changed CSS Resets to CSS Reset Keywords; improved
wording explaining inherit value; moved Key
Selectors at the beginning of Complex Selectors

Changelog

2020-07-15 2.2: Minor fixes; re-did Specificity
completely; removed the Miller’s Crossing example;
made clearer in Order what is in HTML & what is in
CSS

2020-07-10 2.1: Added note about Safari bug with all:
unset

Changelog

2020-07-09 2.0: (con’t. from ↓) added better

descriptions of & <div>; changed “Default
inherited properties” to “Partial list of inherited
properties” & added text-edge; added detail to MDN’s
CSS Reference in Tools; updated screenshots of CSS-
Tricks in Tools; added CSS Resets section for initial,
inherit, unset, revert, & all; added explanation of
CSS keywords; so many changes I bumped version
number up to 2!

Changelog

2020-07-09 2.0: Added more details to Specificity; minor
edits; added definition of simple selector; moved Key
Selectors under Complex Selectors; for user styles, gave
more detail re: Firefox’s userContent.css, Chrome, &
extensions, & updated screenshot of Safari’s Advanced
Preferences; better screenshot for embedded styles;
updated screenshot for .class selector; updated table
showing difference between HTML & CSS terms; added
order Jans places things in his stylesheets; (con’t. ↑)

Changelog

2018-12-06 1.20: Added screenshots showing embedding
with <style> & how to link to main.css; added logos for
MDN supporters; *:first-child is the same as :first-
child; added Side Note re: using 2 class attributes; in
Formatting, always put ; at the end of each declaration;
added CSS Tricks to Tools; in Class, told viewer to see
Compound to learn how to match an element with 2
classes; screenshots for @import & reorganized those
slides; minor wording changes; better example for
Compound selectors; replaced ID screenshots

Changelog

2018-11-21 1.19: Called out items on browser processing
pipeline illustration; fixed image for multiple classes
(<figurecaption>?!); updated screenshots for child
combinator; for selector lists, removed silly example &
added headings slide; added Side Note on <div> that it
should semantically be ; fixed Cascade example so
proper method is shown; added slides showing difference
between descendant & child combinators; added table on
Time & User Perception to @import; replaced inherit
screenshot

Changelog

2018-10-01 1.18: Added how DOM changes attribute-
value pairs; replaced DOM section with The Browser
Processing Pipeline; fixed Default inherited properties
slide; updated theme to Granneman 1.5; added Walt
Whitman on contradicting yourself

2017-11-06 1.17: Improved key selectors; added reasons
for user CSS

Changelog

2017-10-30 1.16: Added Just Color Picker; added
screenshot of ColorPro website; changed color of some
arrows & shapes to Tulip Tree (#E8A433); better
solutions to specificity problem with .callOut; fixed
wording to be correct &/or more specific; added emoji
for class names; added Opera user-agent styles; better
examples for Key Selectors; applied Granneman 1.4
theme; fixed formatting issues; added default order I
use in stylesheets

Changelog

2017-10-25 1.15: Added better examples for DOM vs
source code; organized Basic Selectors much better;
moved Key Selectors, IDs as page fragment identifiers &
JavaScript hooks, & Compound Selector example from
CSS Selectors to here; gave full list of selectors & grayed
out ones we’re not covering here; fixed wording
introducing the Cascade

Changelog

2017-10-18 1.14: Took out details about how to turn on
Firefox 3D View, since it’s not longer supported; made
Cascading chapter slide italicized; corrected & added info
on anonymous boxes; in History, hid modules & added
Can I Use, minor fixes & corrections

2016-09-23 1.13: Moved slide comparing class & ID; under
Importance, rearranged IE & Safari & added Firefox for
Windows, Chrome, & Edge; re-ordered examples of
Descendant Combinator; fixed formatting errors

Changelog

2016-09-16 1.12: Updated theme to Granneman 1.2;
small changes in wording to make things clearer;
cleaned up formatting in a few places; added slide re:
using classes instead of IDs; fixed slides in Selector
Grouping; changed Important example from
WordPress to Bootstrap; fixed wrong information re:
class & id values & clarified; added example for
Descendant Combinator

Changelog

2016-01-20 1.11: Added slide re: CSS3 Taxonomy &
Status; better explanation why we need <div>; added note
re: specificity

2016-01-11 1.10: Minor improvements taken from CSS -
Selectors; added Child Combinator to Selectors; added
another example of Child Combinator; added screenshots
of browser CSS; explained author vs author in
Importance; explained how my Safari CSS works; added a
long example showing how the Cascade works in practice

Changelog

2015-12-13 1.9: Clarified source of DOM quote; changed numbers
of selectors; got rid of E & F in selectors & made them clearer;
changed .bigRed to .big-red; clarified source of class & ID names;
add tweet re: CSS to beginning

2015-05-10 1.8: Added info about CSS 4; clarified that &
<div> draw boxes; added additional names of directories that are
always created; changed “What Google prefers” to “… uses”;
removed Hues & added Sip to Color Pickers; fixed URL &
screenshots for CSS Vocabulary; moved Viewport Resizer to
Bootstrap; for Separation of Concerns, added “& Meaning” to
HTML

Changelog

2015-03-06 1.7: Added another example of selector
grouping; added details about resource inlining

2015-01-12 1.6: Added my safari.css file; clarified &
added info on specificity

2015-01-11 1.5: Clarified Inheritance

2014-09-27 1.4: Changed “browser” to “rendering engine”
in a few places where it made sense

Changelog

2014-08-12 1.3: Improved Descendant Selector examples;
improved wording & added slides in DOM section; improved
Cascade diagram; fixed <div> screenshot; added URLs for
<div> & screenshots; fixed Viewport Resizer
screenshots

2014-08-10 1.2: Added DOM spec info & screenshots of DOM
& Source Code; added details about Firefox Web Dev Tools

2014-08-04 1.1.1: Added definition of anonymous object

Licensing of this work

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.

To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/.

You are free to:

» Share — copy and redistribute the material in any medium or format
» Adapt — remix, transform, and build upon the material for any purpose, even commercially

Under the following terms:

Attribution. You must give appropriate credit, provide a link to the license, and indicate if changes were made.
You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your
use. Give credit to:

Scott Granneman • www.granneman.com • scott@granneman.com

Share Alike. If you remix, transform, or build upon the material, you must distribute your contributions under
the same license as the original.

No additional restrictions. You may not apply legal terms or technological measures that legally restrict others
from doing anything the license permits.

Questions? Email scott@granneman.com

